VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
 B.E. (EEE: CBCS) III-Semester Supplementary Examinations, May/June-2018
 Electrical Circuits-I

Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B
Part-A (10 $\times 2=20$ Marks $)$

1. Determine $R_{A B}$ for the circuit shown in the fig 1.

fig 1.
2. Determine ' i ' for the circuit shown in the fig 2 .

fig 2.
3. Derive RMS value of a full wave rectifier output clipped at half of its maximum value.
4. A $220 \mathrm{~W}, 110 \mathrm{~V}$ lamp is to be connected across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply by connecting a capacitor in series so that the voltage across the lamp is 110 V . What should be the value of the capacitor?
5. State and explain Reciprocity theorem.
6. Explain the procedure to obtain Thevenin's equivalent for the circuits containing dependent sources.
7. What are half power frequencies?
8. Draw the graph of X_{L} vs. frequency with respect to a series RLC circuit.
9. Prove that the power in a 3Φ system is $\sqrt{3} V_{L} I_{L} \cos \emptyset$ irrespective of star or delta.
10. Distinguish between self \& mutual inductances.

$$
\text { Part-B }(5 \times 10=50 \text { Marks })
$$

11. a) Prove that power in Electrical Systems is given by the product of voltage and current
b) Determine effective resistance between nodes A \& B in circuit as shown in fig. 3

fig 3.
12. a) Explain the concept of phase and phase difference using suitable example.
b) A parallel circuit having two branches, first branch consisting of 3Ω resistor in series with 12.7 mH inductor and second branch consists of 1Ω resistor in series with 3.18 mH inductor. The whole combination is connected to a $200 \mathrm{~V}, 1 \Phi, 50 \mathrm{~Hz}$ supply. Calculate
1) Conductance \& susceptance of each branch
2) The equivalent admittance
3) The current in each branch
4) The total current.
13. a) State and explain Millman's theorem.
b) Applying Thevenin's theorem, determine the current through 5Ω resistor for the circuit shown in Fig. 4.

14. a) A series RLC circuit is connected to a variable frequency supply. State what happens when
a) $f<f_{r}$
b) $f=f_{r}$
c) $f>f_{r}$
b) A coil has a resistance of 400Ω and inductance of $318 \mu \mathrm{H}$. Find the capacitance of the capacitor which when connected in parallel with the coil will produce resonance with a supply frequency of 1 MHz . If a second capacitor of 23.5 pF is connected in parallel with the first capacitor, find the frequency at which resonance will occur.
15. a) What is "Dot Convention". Explain with the help of an example.
b) A $3 \Phi, 3$ wire, 400 V , RYB system supplies a delta connection of three equal impedances of $5 / 45^{\circ}$ Ohms. Determine the line currents $\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{Y}} \& \mathrm{I}_{\mathrm{B}}$ and draw the phasor diagram
16. a) Write a note on Source transformation.
b) A coil takes a current of 1 A at 0.6 lagging power factor from a $220 \mathrm{~V}, 60 \mathrm{~Hz}$, single phase, 60 Hz supply. If the coil is modelled by a series RL circuit find
i. Complex power in the coil
ii. Values of R \& L.
17. Answer any two of the following:
a) Explain Maximum Power Transfer theorem with respect to DC circuits.
b) Two magnetically coupled coils have self-inductance $L_{1}=100 \mathrm{mH}$ and $L_{2}=400 \mathrm{mH}$.

If the coefficient of coupling is 0.8 , find the value of mutual inductance between the coils. What would be the maximum possible mutual inductance?
c) A $400 \mathrm{~V}, 3-\emptyset$ balanced source is connected to an unbalanced mesh connected impedances of $Z_{\mathrm{RY}}=10 / \underline{10^{\circ}} \Omega ; \mathrm{Z}_{\mathrm{YB}}=20 / \underline{0^{\circ}} \Omega ; Z_{\mathrm{BR}}=30 /-53^{\circ} \Omega$.
Determine line currents and the total active and reactive power.

